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In order to calculate unbiased microphysical and radiativequantities in the
presence of a cloud it is necessary to know not only the mean water content,
but also the distribution of this water content. This article describes a study of
the in-cloud horizontal inhomogeneity of ice water content, based on CloudSat
data. In particular, by focusing on the relations with variables which are
already available in general circulation models (GCMs), a parametrization of
inhomogeneity that is suitable for inclusion in GCM simulations is developed.
Inhomogeneity is defined in terms of the fractional standarddeviation (FSD),
which is given by the standard deviation divided by the mean.The FSD of
ice water content is found to increase with the horizontal scale over which it
is calculated and also with the thickness of the layer. The connection to cloud
fraction is more complicated; for small cloud fractions FSDincreases as cloud
fraction increases while FSD decreases sharply for overcast scenes. The relations
to horizontal scale, layer thickness and cloud fraction areparametrized in a
relatively simple equation. The performance of this parametrization is tested
on an independent set of CloudSat data. The parametrizationis shown to be
a significant improvement on the assumption of a single-valued global FSD.
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1. Introduction

Many of the processes that are modelled in general
circulation models (GCMs) are non-linear and the physical
quantities on which these processes depend are often
spatially variable at unresolved scales. Consequently, the
process rate calculated using the gridbox mean value of
such a variable is a biased estimate of the mean process
rate within each gridbox. One such physical quantity is
cloud water content.Pincus and Klein(2000) estimated
that process rates calculated from gridbox mean water
content values could have relative biases as large as 100%.
Larsonet al. (2001) showed that representing subgrid-scale
water content variability is important for microphysics and
thermodynamical processes. In particular they suggested
that neglecting water content variability could lead to
reduced autoconversion rates in GCMs. Subgrid-scale water

content variability is also important for radiative transfer
calculations; the radiative effect of a cloud depends non-
linearly on the cloud water content (e.gHanet al. 1998).
As a result, GCM radiative transfer calculations that use
the mean cloud water content and assume that clouds are
horizontally homogeneous do not give the correct domain
mean radiative fluxes (e.g.Cahalanet al.1994).

In the past decade, computationally efficient methods
for representing the radiative effects of sub-grid cloud
water content variability have been developed and tested
(e.g. Pincuset al. 2003; Li et al. 2005; Shonk and Hogan
2008; Hill et al. 2011). Monte Carlo methods have also
been suggested for representing the microphysical effects
(Larsonet al.2005). While progress has been made towards
representing the effects of subgrid-scale cloud variability in
GCMs, it remains unclear how much subgrid-scale water
content variability exists.
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A number of articles have used observations
to quantify horizontal cloud water variability (e.g.
Rossowet al. 2002; Hogan and Illingworth 2003;
Oreopoulos and Cahalan 2005). However, as highlighted in
the review ofShonket al. (2010), these published articles
use different inhomogeneity parameters, observation
sources, cloud types and space and time scales. As a
consequence of this their results and conclusions are quite
different and in some cases seem contradictory.

Studies that have considered radiative sensitivity to
the magnitude of cloud water content variability suggest
that it can have a significant impact.Shonk and Hogan
(2010) estimated that the uncertainty in their estimate of a
global mean variability parameter could change the global
mean top of atmosphere (TOA) net radiation budget by
2-4 Wm-2. For a small systematic change to a globally
varying inhomogeneity parameter,Barker and Räisänen
(2005) estimated a smaller, but still significant change
of 0.98 Wm-2, with larger changes at most latitudes.
Although these values are small, they are significant
when compared to the radiative forcing due to doubling
CO2, estimated to be 3.7 Wm-2 (Ramaswamyet al. 2001).
Gu and Liou(2006) considered the difference between two
5-year climate simulations. In one they scaled the optical
depth of all clouds by a globally constant factor of 0.7
to account for water content inhomogeneity. In the other
they used a globally varying climatological scaling factor
for high-level clouds derived from International Satellite
Cloud Climatology Project (ISCCP) data. They found
significant differences, not only in the cloud albedo, which
is directly affected by the change, but also in the cloud and
precipitation fields.

Barkeret al. (1996) found significantly different
inhomogeneity parameters for stratocumulus and cumulus
clouds, whileOreopoulos and Cahalan(2005) showed that
cloud inhomogeneity varies with latitude. This implies
that cloud water content variability depends on the
meteorological regime, which means that a global mean
inhomogeneity parameter will be a biased estimate of the
inhomogeneity for different regimes. In a GCM simulation
these biases could have feedback effects leading to further
errors. GCMs do not generally predict meteorological
regimes explicitly (e.g. they don’t explicitly predict whether
a cloud is stratocumulus or cumulus). Moreover using
an inhomogeneity parameter that depends on location
as in Gu and Liou(2006) means that the inhomogeneity
parameter will be unable to respond to changes in climate.
However, it may be possible to capture this dependence on
regime using some of the variables predicted in a GCM.

In this article we describe water content variability in
terms of the fractional standard deviation (FSD) of cloud
water content. The FSD is simply the standard deviation
divided by the mean. FSD was chosen as the inhomogeneity
parameter because it accounts for the strong correlation (e.g.
Carlinet al.2002) between the mean and standard deviation
of cloud water content, and it has been used in previous
studies of water content variability (e.g.Räisänenet al.
2004; Shonket al. 2010). We are interested in in-cloud
variability, so only include cloudy values (i.e. water content
greater than zero) in the calculation of FSD. Moreover, we
are interested only in the instantaneous spatial variability,
not unresolved temporal changes in cloud water content, the
radiative effects of which can be modelled by using output
from a GCM cloud scheme (e.g.Mannerset al.2009)

This study of cloud water content variability is based
on CloudSat data. CloudSat (Stephenset al. 2008) is a
polar orbiting satellite that carries a cloud radar and is part
of the ‘A-train’, a constellation of satellites each carrying
different instruments, orbiting the earth in sufficiently close
proximity for their observations to be combined. The data
product resolves cloud water content (the mass of liquid or
ice water per unit volume of air) vertically and horizontally
and thus is an excellent resource for the study of the
magnitude of in-cloud water content variability. This article
focuses on ice water content (IWC) variability as the
retrieval is thought to be more accurate than that of liquid
water. For further details on the CloudSat data used in this
study, see Section2.

This article describes the development of a
parametrization for the FSD of ice water content, suitable
for use in both numerical weather prediction (NWP) and
climate models, based on CloudSat data. Section2 consists
of a brief description of the CloudSat data used in the
study. In section3 we perform a spectral analysis of the
data, in order to inform the study of the dependence of
water content variability on horizontal resolution, whichis
described in section4. Section5 discusses the sensitivity
of FSD to the cloud fraction, while section6 considers
the effect of vertical resolution on the FSD. The final
parametrization for use in GCMs is presented and tested in
7. Finally, conclusions are drawn and avenues for further
work are highlighted in section8.

2. CloudSat data

CloudSat was launched in April 2006 and data are available
from June 2006. As one of five satellites in the sun-
synchronous A-train, CloudSat orbits in close proximity
to the Aqua satellite carrying the Moderate-Resolution
Imaging Spectroradiometer (MODIS), which measures
radiances. A number of CloudSat products have been
developed, which combine observations from CloudSat,
Aqua and other A-train satellites and are available from the
CloudSat website (http://www.cloudsat.cira.colostate.edu).
In particular, this study uses the 2B-CWC-RVOD (cloud
water content, radar and visible optical depth) product,
which combines CloudSat observations with MODIS
radiance observations from the Aqua satellite in order to
estimate the distribution of cloud water content within the
atmosphere.

The algorithm used to produce this product is a
modified version of that used to produce the equivalent radar
only product that is described byAustin et al. (2009). We
shall provide a brief description of the method for retrieving
ice water content. A more extensive description is available
from the CloudSat website.

The retrieval assumes that ice particles are spheres
with a log-normal particle size distribution (PSD). The PSD
has three parameters: the geometric mean particle diameter,
the distribution width parameter and the total particle
number concentration. A priori values for the first two
parameters are temperature dependent. The a priori particle
concentration is more complex (seeAustinet al. (2009) for
details). Optimal parameter values are obtained by using the
PSD to forward model the extinction and backscatter, then
comparing to observations. Once the optimal parameters
have been calculated, ice water content is calculated by
integrating over the PSD, assuming the ice particles have
the density of solid ice (0.917 kgm-2). Separate retrievals
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are performed for liquid and ice; ice properties are used
at temperatures less than−20◦C, liquid at temperatures
larger than0◦C and a linear combination of the two at
intermediate temperatures.

Each of the 2B-CWC-RVOD profiles measures 1.7
km along track and 1.3 km across track and divides the
atmosphere into 125 vertical layers each of which is 240 m
thick. At this horizontal scale, almost all of the cloud water
content variability is captured (Oreopoulos and Davies
1998). The largest length scales used in this study consist
of 500 CloudSat profiles, which corresponds to 850 km.
As a new CloudSat profile is observed every 0.16 seconds,
850 km of data is observed in only 80 seconds and any
variability is approximately instantaneous, an advantage
over ground-based studies where changes in time are
assumed to be due to changes in space advected over the
site (e.g.Hogan and Illingworth 2003).

The cloud profiling radar on board CloudSat operates
at 94 GHz. At this frequency radars suffer virtually no
attenuation by ice water (Hogan and Illingworth 1999).
However, in liquid clouds, drizzle droplets can dominate the
radar reflectivity factor while containing negligible liquid
water and thus the radar reflectivity factor is not a good
indicator of the liquid water content (Fox and Illingworth
1997). For this reason, CloudSat estimates of ice water
content are expected to be more accurate than those of
liquid water content. Hence we focus on the FSD of ice
water content. It should be noted that this ice water content
includes all frozen hydrometeors. Thus the results presented
here are not necessarily applicable to ice particles that have
been split into multiple categories, such as “precipitating”
and “suspended”.

This study uses data from two separate arbitrarily
chosen periods. Initially we use data observed between
22nd December 2007 and 10th January 2008, a total of
9,752,539 CloudSat profiles, and over a billion values of
ice water content. As the satellite is polar orbiting, this
includes observations from all latitudes and longitudes and
should be representative of the whole CloudSat data set.
Nevertheless, to check that it is indeed representative, we
test the parametrization on data observed between 15th June
and 25th June 2006 (5,006,028 profiles and over 500 million
water content observations).

3. Spectral Analysis

A number of metrics have been used to study the
statistical properties of clouds (e.g.Marshaket al. 1997).
In this section we use one such technique, spectral
analysis, to study CloudSat ice water content. We chose
this metric as it is most widely used in the existing
literature (e.gCahalan and Joseph 1989; Lewiset al. 2004;
Daviset al. 1999) and thus allows us to confirm that the
spatial statistical properties of the CloudSat ice water
content are consistent with other observation sources. This
spectral analysis complements the following section, which
considers how the FSD changes with horizontal domain
size.

Many previous studies have observed that for scales
between metres and tens of kilometres, the wavenumber
spectrum of cloud water content approximately follows a
−5/3 power law (e.g.Daviset al. 1996; King et al. 1981).
However, this−5/3 power law is not observed universally.
For example, using ground-based radar observations of a
cirrus cloud,Hogan and Kew(2005) found that for scales

less than 50 km, the power spectrum of the natural logarithm
of ice water content appears to obey a−5/3 power law at
cloud top, with the spectra becoming steeper with depth
into the cloud, obtaining values as low as−3.5 in some
cases. This is thought to be due to the effects of wind
shear. For scales larger than 50 km they find that the
spectra are flat.Lewiset al. (2004) calculated spectra for
LandSat observations of marine boundary layer clouds.
They considered 12 overcast and 12 partially cloudy scenes
and found that the spectrum of liquid water path obeyed
a −5/3 power law for overcast scenes. For the partially
cloudy scenes the spectra displayed more scene to scene
variability with the average spectrum following a−1 power
law.

We calculated the mean ice water content spectrum
for isolated clouds of various sizes, the smallest containing
8 CloudSat cells and the largest containing 128 cells (i.e.
13.6 km and 217.6 km long respectively). These spectra
were produced as follows. Each layer of the CloudSat data
was divided into individual clouds, separated by at least
one clear-sky cell. The ice water content for each cloud
was divided by the mean ice water content for that cloud
and the spectrum for the resulting normalised ice water
content was calculated. The spectra for individual clouds of
the same size were then averaged together and multiplied
by the size of the cloud (i.e. the number of cells in the
cloud). By Parseval’s theorem, the integral of the resulting
mean spectrum for a given cloud size is equal to the mean
fractional variance (FVAR) for clouds of that size, where the
FVAR of a cloud is defined as the square of the FSD of that
cloud. (Note however, that as the square is non-linear, the
mean FVAR is not equal to the square of the mean FSD.)
These spectra are shown in Figure1 below.

Figure 1. Mean spectra for clouds of fixed size, ranging from 8 to 128
CloudSat cells (thin lines). For comparison, the thick black line obeys a
−5/3 power law.

Figure 1 shows several interesting features. The
spectrum for each cloud size appears to approximately obey
a −5/3 power law, as shown by the thick black line. This
is consistent with the existing literature, as described atthe
beginning of this section. While the spectra obey a−5/3
power law for all cloud sizes, the values of the spectra
decrease for larger clouds. This implies that the FVAR per
unit length of a small cloud is larger on average than that of
a larger cloud. Despite this, the integral under the spectrum
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increases for larger clouds, because we integrate over a
larger horizontal scale.

As the mean spectrum,E for a cloud of lengthx can
be approximated by a power law of the form

E = A(x)k−5/3, (1)

wherek is the wavelength, the mean FVAR for a cloud of
lengthx can be calculated by integrating under the spectrum
as follows

FVAR =

∫

1/x1

1/x

E(k)dk = A(x)(x2/3 − x
2/3

1
). (2)

The upper limit of the integral,1/x1 corresponds to the
maximum wavenumber for which the spectrum is defined.
This means thatx1 is equal to the resolution of the data,
which in the case of the 2B-CWC-RVOD data used here
equals 1.7 km.

Water content spectra have been observed to follow
power laws down to scales as small as 3 m (King et al.
1981). This suggests that the spectra observed in Figure1
can be extrapolated to smaller scales. In this case, the mean
FVAR for a cloud of lengthx will simplify to

FVAR = A(x)x2/3. (3)

Note however, that while this is a prediction of the actual
FVAR, to ensure the best comparison to the CloudSat data
we must include thex1 in order to exclude the variability
that is unresolved in the data.

In our spectral analysis, we have considered how ice
water content variability changes with cloud size. However,
the sizes of individual clouds are not predicted in GCMs,
which in general simply predict the cloud fraction within
a gridbox. Consequently the observed relationship between
variability and cloud size cannot be used as a basis for the
parametrization.

4. Horizontal scale

In this section we consider how the FSD of ice water
content changes with the scale of the domain over
which it is calculated. For ground-based cloud radar
data,Hogan and Illingworth(2003) found that, for overcast
gridboxes, the FVAR of ice water content was proportional
to the size of the gridboxes to the power of 0.3 for scales up
to 60 km, but that it grows no further for larger gridboxes.

To calculate the IWC FSD for a given domain size,
each layer of the data is sub-divided horizontally into
adjacent ‘gridboxes’ each containing the same number of
CloudSat cells. For each gridbox that contains more than
one cloudy cell the FSD is calculated. Figure2 shows the
mean FSD of both ice water content and ice water path
(calculated by summing the ice water content in a column),
calculated for gridboxes ranging from 4 to 500 profiles (6.8
to 850 km) in size. The FSD rises sharply with gridbox size
at smaller scales, then levels off at larger scales. Note that
the FSD for water path is larger than that for water content.
This contradicts the suggestion byShonket al. (2010) that
the FSD for water content was larger. This relationship is
considered in more detail in section6, where we consider
the effect of the layer thickness on the inhomogeneity.

The trend of the FSD can be explained by the results of
the spectral analysis. The FSD increases with gridbox size

Figure 2. Mean FSD of ice water content (solid line) and ice water path
(dashed line) when data is divided into horizontal boxes containing the
given number of CloudSat profiles.

because as the gridbox size is increased, the gridbox may
contain larger clouds, which have larger values of FSD. The
slope decreases with gridbox size because the rate at which
the FSD rises with cloud size decreases and larger clouds
occur less frequently.

Figure 3 again shows how the FSD of ice water
content increases with gridbox size (solid black line), this
time with vertical bars that show the standard deviation
of the FSD for a selection of the gridbox sizes. The
dashed line shows the case when we include only overcast
gridboxes, in which case the results are similar to those
of Hogan and Illingworth(2003), who also considered only
overcast gridboxes. Note that the standard deviation of the
FSD is much smaller when only overcast gridboxes are
included. This implies that a considerable amount of the
variability of the FSD is due to the variability in cloud
fractions, which suggests there is a significant relationship
between FSD and cloud fraction, which is considered in
more detail in Section5. As the FSD for overcast gridboxes
is less variable, we shall begin by parametrizing this and
then extend the parametrization to capture some of the extra
variability that is introduced when different cloud fractions
are considered.

An overcast gridbox can only contain clouds that are
larger than or equal to that gridbox in size. Thus the mean
FSD for an overcast gridbox of sizex can be calculated by
summing the contributions to the FSD for each cloud size,
approximately equal to the square root of equation2, and
weighting by the likelihood of sampling a cloud of that size,

FSD=

√

x2/3 − x
2/3

1

∞
∑

z=x

√

A(z)W (z), (4)

whereW (z) is the likelihood of an overcast gridbox of size
x being a sample from a cloud of sizez. Using a gradient-
expansion algorithm to compute a non-linear least squares
fit, we can approximate the sum by a combination of power
laws, resulting in the following parametrization for the FSD
of an overcast gridbox of sizex km,

FSD= 0.13
√

x2/3 − 1.41

[

(0.016x)1.10 + 1

]

−0.26

. (5)
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Figure 3. Mean FSD of ice water content as a function of gridbox size
for all data (solid line) and only those gridboxes that are overcast (dashed
line). The vertical bars show the standard deviation of the FSD for the given
gridbox size. The grey line shows the FSD given by equation5.

The FSD predicted by equation5 is shown by the grey
line in Figure3 and is an excellent fit to the mean observed
FSD. Note that the−1.41 term corresponds to putting the
CloudSat resolution as the value ofx1 and is only necessary
when comparing to the observed data, to account for the
unresolved variability.

5. Variability as a function of cloud fraction

According to Cahalan (1994), in the case of Califor-
nia marine stratocumulus, the liquid water content vari-
ance increases as the cloud fraction increases. This could
perhaps be explained by the horizontal scale depen-
dence discussed in the previous section. By contrast,
Oreopoulos and Cahalan(2005) found no strong relation-
ship between cloud fraction and inhomogeneity, except
for cloud fractions greater than 0.9, when clouds become
considerably more homogeneous. In this section, we inves-
tigate the relationship between FSD and cloud fraction and
attempt to explain these apparently contradictory results.

Figure 4 shows the mean FSD when gridboxes with
cloud fraction within a given range are binned together.
Values for gridboxes containing 25, 50, 100 and 200
CloudSat cells are shown. For all gridbox sizes, FSD
initially increases with cloud fraction, then remains fairly
constant, before dropping off sharply if the gridbox is
overcast. As the gridbox size is increased, the cloud fraction
at which the FSD no longer increases gets smaller. This
suggests that the observed increase in FSD with cloud
fraction is related to cloud size rather than cloud fraction.

Assuming that the CloudSat resolution is sufficient to
resolve cloud edges, an overcast gridbox contains only a
single cloud and in almost all cases excludes the edges of
that cloud. In theory, either or both of these could lead to
the steep decrease in FSD that is observed as cloud fractions
approach one. A gridbox containing a single cloud may
have a lower in-cloud FSD than one containing multiple
clouds, which includes contributions from both internal
cloud variability and the variance in mean water content
between different clouds (cf. Figure8). Cloud edges often
contain lower values of liquid water content than the rest of

Figure 4. Fractional standard deviation of ice water content (IWC FSD) as
a function of cloud fraction for gridboxes containing 200, 100, 50, and 25
CloudSat cells (solid, dotted, dashed and dot-dashed linesrespectively).

the cloud, and as a result have the effect of both increasing
the variability of water content in the cloud and decreasing
the mean water content of the cloud. Both of these lead to
larger values of FSD.

Alongside the FSD for all gridboxes, Figure5 shows
the FSD for those gridboxes that contain exactly one cloud,
but not necessarily the entire cloud (where a gridbox
contains one cloud if the cloudy cells are not separated by
any clear cells). Also shown is the FSD for gridboxes that
contain exactly one cloud and both cloud edges (where the
edges are defined as the single cloudy cells at either end
of the cloud). Data for gridboxes containing 50 cells are
shown. It is clear that the drop in FSD as cloud fraction
nears one is due to the fact that overcast gridboxes tend not
to include cloud edges.

Figure 5. Fractional standard deviation of ice water content (IWC FSD)
as a function of cloud fraction for gridboxes containing 50 cells. Solid
lines show the FSD for all gridboxes. Dotted lines show the FSD for those
gridboxes that contain one cloud only. Dashed lines show theFSD for those
gridboxes that contain only one cloud and contain all of thiscloud.

Equation5 gives the FSD only for a cloud fraction of
one. In developing a parametrization applicable to smaller
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cloud fractions, we start by replacing the dependence on
gridbox size (x) with a dependence on cloud extent (xc) (i.e.
the gridbox size multiplied by the cloud fraction). However,
the resulting FSD is an underestimate for cloud fractions
smaller than one. The four thin black lines in Figure6 show
the ratio of the observed mean FSD to this predicted FSD,
for the same 20 cloud fractions and four gridboxes sizes
in Figure4. Note that we do not include overcast scenes,
for which equation5 is a good estimate. These ratios are
reasonably similar for all gridbox sizes, except for small
cloud fractions, where the FSD is already small, so a large
difference in ratio has less impact. Since the ratios are
similar, we average across the four gridbox sizes, as shown
by the light grey line and then fit a linear function of cloud
fraction to this average, as shown by the thick dark grey line.

Figure 6. Ratio of observed ice water content fractional standard deviation
(FSD) and the FSD predicted by equation5 as a function of cloud fraction.
Note that we use the cloud extent instead of the gridbox size in equation
5. The thin black lines correspond to the observed relationship for the
different gridbox sizes. The light grey line shows the average relationship
for these gridbox sizes and the dark grey line shows a linear fit to this
average relationship.

Combining the average ratio estimated from Figure
6 and the FSD based on cloud extent gives the following
equation for the FSD for a partially cloudy gridbox.

FSD= (0.25 − 0.04c)
p

(xc)2/3
− 1.41

»

(0.016xc)1.10 + 1

–

−0.26

(6)
wherec is the cloud fraction. The FSD predicted by this
equation is shown in Figure7. The equation captures
the FSD pattern well, though the slight decrease in FSD
as cloud fractions approach one, which is particularly
evident for the large gridboxes, is not captured by the
parametrization. As a result the FSD for cloud fractions
around 0.9 is overestimated. For the smallest gridboxes,
the FSD for very small cloud fractions is overestimated.
However, for other gridbox sizes the initial increase in
FSD with cloud fraction is very well predicted and for
intermediate cloud fractions the parametrization errors are
small. Despite being relatively simple, the parametrization
provides a very good estimate of the complex relationship
between IWC variability and cloud fraction at all gridbox
sizes.

Figure 7. Fractional standard deviation of ice water content (IWC FSD) as
a function of cloud fraction. Black lines are as in Figure4. Grey lines show
the FSD predicted by equation6.

6. Vertical layer thickness

Figure 2 shows that the FSD of ice water path is larger
than that of ice water content, which suggests that the
FSD increases as vertical resolution decreases. This section
considers the relationship between FSD and vertical layer
thickness in more detail.

To determine the sensitivity of FSD to vertical scales,
IWC values are averaged in the vertical to create thicker
layers. For example, after the original data, the next
highest resolution data was calculated by summing the
IWC in adjacent layers to create a profile containing 124
overlapping vertical layers each of which is 480 m thick
(recall the original data has 125 layers, each of which is 240
m thick).

Figure 8 shows the mean FSD calculated for layers
of the given thickness, for two different horizontal gridbox
sizes, containing 200 and 25 CloudSat cells. The solid
lines include all data and show that the FSD increases as
layer thickness increases. The increase is most rapid for the
thinnest layers, which correspond to the vertical resolutions
that are likely to be used in GCMs.

The increase in FSD as the layer thickness increases
can be explained as follows. Consider a gridbox containing
multiple layers, each of which containsn cloudy cells,
covering a fraction of the gridbox. Assume that the clouds
are horizontally homogeneous and the water content in each
cloudy cell equalsx. Thus the FSD in any layer equals
zero. Now sum the water contents in the vertical. If the
samen cells are cloudy in each layer (i.e. the clouds are
exactly overlapped), then the integrated water content in
each column will be the same and the FSD will be zero.
However if not, then the columns would contain different
integrated water content and FSD will be non-zero. That is,
the integrated FSD would be larger than that in any layer
because the integrated FSD is accounting for apparent in-
cloud inhomogeneity that is in fact simply due to the vertical
resolution being insufficient to resolve cloud boundaries.

The dashed lines in Figure8 show how the FSD
changes with layer thickness for gridboxes that contain
one cloud whose layers are exactly overlapped (i.e. the
vertically integrated cloud fraction is identical to the cloud
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Parametrizing inhomogeneity of ice water content 7

Figure 8. Mean fractional standard deviation of ice water content (IWC
FSD) for given vertical resolution. The solid lines show themean FSD
when no restrictions are applied to the data, the dotted lines show the
mean FSD for those gridboxes that contain only one cloud (i.e. no breaks
between cloudy cells) and the dashed lines show the FSD for those
gridboxes that contain only one cloud where exactly the samecells contain
cloud in each layer of the original data. The black lines correspond to
gridboxes containing 200 cells and the grey lines to gridboxes containing
25 cells.

fraction in each layer). For these gridboxes, the FSD does
not need to account for any unresolved cloud structure.
Hence the FSD decreases as layer thickness increases.
This is the behaviour predicted byShonket al. (2010),
who suggested that this is because in-cloud water content
decorrelates as the distance between layers increases (e.g.
Barker and Räisänen 2005; Hogan and Illingworth 2003),
which has the effect of smoothing the vertical average.

The FSD for those gridboxes that contain exactly one
cloud, with no restriction on overlap between cloud in
different layers, is shown by the dotted lines in Figure8.
Now the FSD has to account for some unresolved cloud
structure. As the layer thickness increases, the amount of
unresolved structure increases. The competing effects of
the unresolved cloud structure and the smoothing effect of
decorrelating water content lead to a FSD that generally
increases slightly with layer thickness.

If no restrictions are placed on the gridboxes (other
than that they contain some cloud), then there may be
multiple clouds in the gridbox and as the layer thickness
increases, there may be a great deal of unresolved cloud
structure. This means that the FSD increases significantly
as layer thickness increases, as shown by the solid lines in
Figure8.

Figure 8 suggests that FSD of ice water content
is quite sensitive to vertical resolution and that it is
worthwhile including a vertical resolution dependence in
any parametrization. For simplicity, the parametrization
is restricted to layers that are thinner than 2.4 km (i.e.
contain less than 10 CloudSat layers). Beyond this scale,
the relationship between FSD and layer thickness cannot be
accurately described with a simple equation. Moreover, the
relevant layers in current GCMs (i.e. the layers that contain
clouds) are generally thinner than 2.4 km.

The relevant part of Figure8 is shown again in Figure9
(note that it is no longer in log-log space). The broken lines
show the relationship between FSD and layer thickness,

which appears to be best described by a power law. The
dark grey lines show the mean FSD given by equation
6. Neither of the dark grey lines show any significant
change with increasing thickness, which implies that the
thickness dependence is independent of this equation. Thus
we assume that we can predict the FSD for a single layer
exactly and simply consider how the relationship between
this FSD and the multi-layer FSD changes with increasing
layer thickness. Letting∆z denote the layer thickness (in
km) andA denote the FSD for a single layer, a least square
error fit gives

FSD= A

(

∆z

0.24

)0.11

. (7)

Figure 9. Mean fractional standard deviation of ice water content (IWC
FSD) for vertical resolution between 240 m and 2.4 km. For gridboxes of
length 340 km (dotted line) and 42.5 km (dashed line). The dark grey lines
show the mean FSD predicted by equation6, which does not include any
dependence on layer thickness. The light grey lines show theFSD given by
equation7, where the value of A is chosen so that the equation gives the
observed value of FSD for individual CloudSat layers.

7. Parametrization

We have seen that the mean in-cloud FSD depends on the
scale over which it is calculated (both horizontally and
vertically) and cloud fraction. The remainder of this article
illustrates how these relationships can be combined into a
single parametrization and describes the results of testing
this parametrization.

The mean FSD for a gridbox of horizontal lengthx km
and thickness∆z km is obtained by combining equations
5 and 7 to get equation8, wherec is the cloud fraction.
Note thatx1 is again equal to the minimum resolved scale,
and for the purpose of comparing this parametrization to
CloudSat observations is set to 1.7 km. However when this
parametrization is implemented in a GCM,x1 should be set
to zero.

7.1. Comparing observed FSD to modelled FSD

The parametrization defined by equation8 is tested on
several days of CloudSat data from Summer 2006. These
data are independent of the CloudSat data that were used
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FSD=































(0.29 − 0.05c)
√

(xc)2/3 − 1.41

[

(0.016xc)1.10 + 1

]

−0.26

(∆z0.11) if c < 1;

0.15
√

x2/3 − 1.41

[

(0.016x)1.10 + 1

]

−0.26

(∆z0.11) if c = 1.

(8)

to develop the parametrization. The data were divided
into gridboxes of size 200, 100, 50 and 25 km (which
corresponds to gridboxes containing 117, 59, 29 and 15
CloudSat profiles respectively) and thickness from 240 m
to 2.4 km in 240 m increments (which corresponds to
vertically averaging between 1 and 10 CloudSat layers). For
each cloudy gridbox, the observed FSD and parametrized
FSD were calculated. These were then used to calculate
the parametrization bias (i.e. the mean difference between
the FSD predicted by the parametrization and the observed
FSD), shown in Figure10 and the mean absolute error
(the mean of the absolute value of the difference between
the FSD predicted by the parametrization and the observed
FSD) of the parametrization, shown in Figure11. To put
these values into context, the bias and mean absolute error
for a constant FSD equal to 0.75 are also shown. This
is the global mean FSD for all cloud types estimated
by Shonket al. (2010) based on a review of the existing
literature.

Figure 10. Mean difference between the fractional standard deviation
(FSD) of ice water content given by equation8 and the observed FSD,
for layers between 240 m and 2.4 km in thickness and gridbox sizes of 200
(solid), 100 (dotted), 50 (dashed) and 25 (dot-dashed) km.

The bias of the FSD predicted by the parametrization
is small for all gridbox sizes and layer thicknesses. The
behaviour of this bias can be understood by considering
the individual components of the parametrization. The
relationship between FSD bias and layer thickness is
similar for all four gridbox sizes and is the same as
that for the thickness parametrization shown in Figure
9. The relationship between FSD bias and gridbox size
is consistent with that shown in Figure7. The constant
FSD is a good estimate of the mean FSD for gridboxes
that are 200 km in length, but overestimates the observed
FSD for smaller gridboxes and has larger biases than the
parametrization for all gridbox sizes.

Figure 11. Mean absolute difference between the fractional standard
deviation (FSD) of ice water content given by equation8 and the observed
FSD, expressed as a percentage of the mean observed FSD. Layers range
from 240 m to 2.4 km in thickness and gridbox sizes are 200 (solid), 100
(dotted), 50 (dashed) and 25 (dot-dashed) km.

The mean absolute errors of the FSD predicted by
the parametrization are shown in Figure11. These errors
increase with gridbox thickness and length. The largest error
is approximately 0.29 and corresponds to gridboxes that are
2.4 km thick and 200 km long. The mean absolute errors
for the parametrization are smaller than those obtained
from the single FSD value for all gridbox sizes and
thicknesses. Of particular note is the improvement for
the gridboxes that are 200 km long and 1.0 km thick.
Here the biases for both the parametrization and 0.75 are
approximately zero. However, due to the cloud fraction
dependence in the parametrization, the mean absolute error
for the parametrization is significantly smaller than that for
FSD=0.75.

The information shown in these Figures is summarised
in Table I, which shows mean values across all the
horizontal and vertical scales included in Figures10 and
11. To add further context we also include the statistics for
the mean FSD, calculated by averaging the mean FSD for
each of the resolutions shown in Figures10 and11. This is
unbiased when all the data is combined, but biased for any
individual resolution. The bias row shows the mean error of
all biases shown in Figure10, which is zero by definition
for the mean. The mean absolute bias row shows the mean
of the absolute value of the the biases shown in Figure10
and the mean absolute error shows the mean of the absolute
errors shown in Figure11. The parametrization performs
better than both the unbiased FSD value and the control
FSD.

The mean absolute FSD error can be split into four
components. Some of the error is due to the relationships
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Control (0.75) Mean (0.60) Param
Bias 0.15 0.00 -0.02

Mean absolute bias 0.16 0.11 0.03
Mean absolute error 0.33 0.28 0.24

Table I. Mean statistics for all the data shown in Figures10 and11.

that are included in the parametrization being in error. This
corresponds to the errors that arose when fitting equations
to the observed trends. There is also a component due
to a FSD dependence on variables that are not included
in the parametrization. For exampleHogan and Illingworth
(2003) found a dependence on wind shear, which is not
included in this parametrization, due to a lack of reliable
global wind speed data to compare to the ice water content
observations. The third component of the mean absolute
error is the sampling error introduced when the observed
FSD is calculated. This decreases as the gridbox size
increases. This could be reduced by using higher resolution
observations. The final component of the error is due to
unpredictable variability of FSD;Hogan and Illingworth
(2003) observed that even within a single cloud, the
horizontal inhomogeneity varies significantly.

8. Summary

This article describes a study of ice water content variability
using combined CloudSat and MODIS observations. Ice
water content variability is considered in terms of the
fractional standard deviation (FSD); the standard deviation
divided by the mean. Results show that FSD increases as
the horizontal scale over which it is calculated increases
and when water content is averaged over larger vertical
scales. A nonlinear dependence on cloud fraction was also
identified; FSD was seen to increase with cloud fraction
for small cloud fractions, while the mean FSD for overcast
gridboxes was found to be significantly smaller than that for
gridboxes with large cloud fractions. This decline in FSD
was shown to be a result of overcast gridboxes excluding
cloud edges. These relationships have been included in
a relatively simple parametrization of ice water content,
suitable for use in a GCM.

The performance of the new parametrization was
tested using data taken from a different period in time.
For the horizontal and vertical resolutions considered, the
magnitude of the parametrization bias was shown to be
less than 0.07. Mean absolute errors were found to be
larger, but significantly smaller than those arising from
the use of a single global FSD. The size of these mean
absolute errors suggests that the parametrization could be
developed further, either by using a function that better fits
the relationships considered in this paper, or by including
the effect of other variables (e.g. wind shear) on the FSD.

In future work, this parametrization will be imple-
mented in the UK Met Office Unified Model (MetUM) and
tested in both NWP and climate simulations. Results of
these tests should indicate how much benefit there would
be in further developing the parametrization, for example
by linking FSD to meteorological regime.

In many GCMs ice particles are split into two or more
categories (often described as ice and snow). However,
there is no such split in either the CloudSat data product
or the MetUM. Consequently, there is no such split in
the parametrization described in this paper. When this

parametrization is included in other GCMs, care should be
taken to ensure that it is applied to thetotal ice content.
This may be more challenging for those GCMs which have
a diagnostic ice category.

The existing parametrization is for ice water content
only. Liquid water content variability is equally important
and it is not clear whether it is significantly different. Using
MODIS data,Oreopoulos and Cahalan(2005) found similar
variability in ice and liquid clouds. On the other hand,
Shonk and Hogan(2008) found that ice clouds exhibit more
water content variability than liquid clouds. It would be
informative to compare this parametrization to observations
of liquid water content variability.
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