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In order to calculate unbiased microphysical and radiative quantities in the

presence of a cloud it is necessary to know not only the mean e content,

but also the distribution of this water content. This article describes a study of
the in-cloud horizontal inhomogeneity of ice water contentbased on CloudSat
data. In particular, by focusing on the relations with variables which are

already available in general circulation models (GCMs), a prametrization of

inhomogeneity that is suitable for inclusion in GCM simulations is developed.
Inhomogeneity is defined in terms of the fractional standarddeviation (FSD),

which is given by the standard deviation divided by the meanThe FSD of

ice water content is found to increase with the horizontal sale over which it

is calculated and also with the thickness of the layer. The emection to cloud

fraction is more complicated; for small cloud fractions FSDincreases as cloud
fraction increases while FSD decreases sharply for overcescenes. The relations
to horizontal scale, layer thickness and cloud fraction areparametrized in a

relatively simple equation. The performance of this paraméization is tested

on an independent set of CloudSat data. The parametrizatioms shown to be
a significant improvement on the assumption of a single-vakd global FSD.
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1. Introduction content variability is also important for radiative tragsf
calculations; the radiative effect of a cloud depends non-
Many of the processes that are modelled in geneliakearly on the cloud water content (ettpnet al. 199§.
circulation models (GCMs) are non-linear and the physic&é a result, GCM radiative transfer calculations that use
quantities on which these processes depend are ofte® mean cloud water content and assume that clouds are
spatially variable at unresolved scales. Consequentdy, Horizontally homogeneous do not give the correct domain
process rate calculated using the gridbox mean valuenedéan radiative fluxes (e.G.ahalaret al. 1994.
such a variable is a biased estimate of the mean process In the past decade, computationally efficient methods
rate within each gridbox. One such physical quantity fer representing the radiative effects of sub-grid cloud
cloud water contentPincus and Klein(2000 estimated water content variability have been developed and tested
that process rates calculated from gridbox mean waferg. Pincuset al. 2003 Li et al. 2005 Shonk and Hogan
content values could have relative biases as large as 1000@8 Hill et al. 2011). Monte Carlo methods have also
Larsonet al. (2001 showed that representing subgrid-scaleeen suggested for representing the microphysical effects
water content variability is important for microphysicsdan(Larsonet al.2005. While progress has been made towards
thermodynamical processes. In particular they suggestedresenting the effects of subgrid-scale cloud varigtiii
that neglecting water content variability could lead t6CMs, it remains unclear how much subgrid-scale water
reduced autoconversion rates in GCMs. Subgrid-scale watentent variability exists.
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2 P.G. Hill etal.

A number of articles have used observations This study of cloud water content variability is based
to quantify horizontal cloud water variability (e.gon CloudSat data. CloudSaStephengtal. 2009 is a
Rossowetal. 2002 Hogan and lllingworth 2003 polar orbiting satellite that carries a cloud radar and i pa
Oreopoulos and Cahalan 2Q0Bowever, as highlighted in of the ‘A-train’, a constellation of satellites each camyi
the review ofShonket al. (2010, these published articlesdifferent instruments, orbiting the earth in sufficientlpse
use different inhomogeneity parameters, observatiproximity for their observations to be combined. The data
sources, cloud types and space and time scales. Apreduct resolves cloud water content (the mass of liquid or
consequence of this their results and conclusions are gigtewater per unit volume of air) vertically and horizonyall
different and in some cases seem contradictory. and thus is an excellent resource for the study of the
Studies that have considered radiative sensitivity f@agnitude of in-cloud water content variability. This el
the magnitude of cloud water content variability suggef§icuses on ice water content (IWC) variability as the
that it can have a significant impacghonk and Hogan retrieval is thought to be more accurate than that of liquid
(2010 estimated that the uncertainty in their estimate ofwgter. For further details on the CloudSat data used in this
global mean variability parameter could change the glotsé¥dy, see Sectioh
mean top of atmosphere (TOA) net radiation budget by This article describes the development of a
2-4 W2, For a small systematic change to a globalRarametrization for the FSD of ice water content, suitable
varying inhomogeneity parameteBarker and Raisanenfor use in both numerical weather prediction (NWP) and
(2009 estimated a smaller, but still significant changéimate models, based on CloudSat data. Secioonsists
of 0.98 Wm2, with larger changes at most latitudef @ brief description of the CloudSat data used in the
Although these values are small, they are significa¥ft!dy. In sectiorB we perform a spectral analysis of the
when compared to the radiative forcing due to doublifft@, in order to inform the study of the dependence of
CO2, estimated to be 3.7 Wfn(Ramaswamyet al. 2007). Water content variability on horizontal resolution, whish
Gu and Liou(2009 considered the difference between twgescribed in sectiod. Section5 discusses the sensitivity
5-year climate simulations. In one they scaled the opti@f| FSD to the cloud fraction, while sectiod considers
depth of all clouds by a globally constant factor of 0.the effect of vertical resolution on the FSD. The final
to account for water content inhomogeneity. In the othBframetrization for use in GCMs is presented and tested in
they used a globally varying climatological scaling factor Finally, conclusions are drawn and avenues for further
for high-level clouds derived from International SatellitWork are highlighted in sectiog.
Cloud Climatology Project (ISCCP) data. They foun
significant differences, not only in the cloud albedo, whi

is directly affected by the change, but also in the cloud aE:(floudSat was launched in April 2006 and data are available
precipitation fields.

from June 2006. As one of five satellites in the sun-
Barkeretal. (199 found significantly different

. : ui;ynchronous A-train, CloudSat orbits in close proximity
inhomogeneity parameters for stratocumulus and cumuigSihe Aqua satellite carrying the Moderate-Resolution

clouds, whileOreopoulos and Cahalg2009 showed that Imaging Spectroradiometer (MODIS), which measures
cloud inhomogeneity varies Wi_th _Iz_atitude. This impliegygiances. A number of CloudSat products have been
that cloud water content variability depends on thgyeloped, which combine observations from CloudSat,
meteorological regime, which means that a global meag 5 and other A-train satellites and are available from the
inhomogeneity parameter will be a biased estimate of thg,ydsat website (http://www.cloudsat.cira.colostde).
inhomogeneity for different regimes. In a GCM simulatiof, particular, this study uses the 2B-CWC-RVOD (cloud
these biases could have feedback effects leading to furtygter content, radar and visible optical depth) product,
errors. GCMs do not generally predict meteorologiCghich combines CloudSat observations with MODIS
regimes explicitly (e.g. they don’texplicitly predict wier ragiance observations from the Aqua satellite in order to
a cloud is stratocumulus or cumulus). Moreover usigtimate the distribution of cloud water content within the
an inhomogeneity parameter that depends on |Ocat5’thosphere.
as in Gu and Liou(200§ means that the inhomogeneity  The algorithm used to produce this product is a
parameter will be unable to respond to changes in climaigodified version of that used to produce the equivalent radar
However, it may be possible to capture this dependencegily product that is described byustin et al. (2009. We
regime using some of the variables predicted in a GCM. shall provide a brief description of the method for retreyi

In this article we describe water content variability ifce water content. A more extensive description is avaslabl
terms of the fractional standard deviation (FSD) of cloif¢éom the CloudSat website.
water content. The FSD is simply the standard deviation The retrieval assumes that ice particles are spheres
divided by the mean. FSD was chosen as the inhomogengith a log-normal particle size distribution (PSD). The PSD
parameter because it accounts for the strong correlatign (aas three parameters: the geometric mean particle diameter
Carlinet al.2002 between the mean and standard deviatigie distribution width parameter and the total particle
of cloud water content, and it has been used in previowsmber concentration. A priori values for the first two
studies of water content variability (e.@Raisaneretal. parameters are temperature dependent. The a priori articl
2004 Shonketal. 2010. We are interested in in-cloudconcentration is more complex (sdastin et al. (2009 for
variability, so only include cloudy values (i.e. water cemit details). Optimal parameter values are obtained by usieg th
greater than zero) in the calculation of FSD. Moreover, VRSD to forward model the extinction and backscatter, then
are interested only in the instantaneous spatial varigibilicomparing to observations. Once the optimal parameters
not unresolved temporal changes in cloud water content, tieve been calculated, ice water content is calculated by
radiative effects of which can be modelled by using outpuitegrating over the PSD, assuming the ice particles have
from a GCM cloud scheme (e.ylannerset al. 2009 the density of solid ice (0.917 kgR). Separate retrievals

CloudSat data
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Parametrizing inhomogeneity of ice water content 3

are performed for liquid and ice; ice properties are uskxss than 50 km, the power spectrum of the natural logarithm
at temperatures less than20°C, liquid at temperaturesof ice water content appears to obey-&/3 power law at
larger than0°C and a linear combination of the two atloud top, with the spectra becoming steeper with depth
intermediate temperatures. into the cloud, obtaining values as low as.5 in some
Each of the 2B-CWC-RVOD profiles measures 1dases. This is thought to be due to the effects of wind
km along track and 1.3 km across track and divides thkear. For scales larger than 50 km they find that the
atmosphere into 125 vertical layers each of which is 240spectra are flatLewiset al. (2004 calculated spectra for
thick. At this horizontal scale, almost all of the cloud watd.andSat observations of marine boundary layer clouds.
content variability is captured Qreopoulos and DaviesThey considered 12 overcast and 12 partially cloudy scenes
1998. The largest length scales used in this study consistd found that the spectrum of liquid water path obeyed
of 500 CloudSat profiles, which corresponds to 850 kr.—5/3 power law for overcast scenes. For the partially
As a new CloudSat profile is observed every 0.16 secondsudy scenes the spectra displayed more scene to scene
850 km of data is observed in only 80 seconds and avariability with the average spectrum following-al power
variability is approximately instantaneous, an advantalgev.
over ground-based studies where changes in time are We calculated the mean ice water content spectrum
assumed to be due to changes in space advected ovefdh&olated clouds of various sizes, the smallest conaini
site (e.gHogan and lllingworth 2003 8 CloudSat cells and the largest containing 128 cells (i.e.
The cloud profiling radar on board CloudSat operaté8.6 km and 217.6 km long respectively). These spectra
at 94 GHz. At this frequency radars suffer virtually nwere produced as follows. Each layer of the CloudSat data
attenuation by ice waterHpgan and lllingworth 1999 was divided into individual clouds, separated by at least
However, in liquid clouds, drizzle droplets can dominate tlone clear-sky cell. The ice water content for each cloud
radar reflectivity factor while containing negligible lig was divided by the mean ice water content for that cloud
water and thus the radar reflectivity factor is not a go@did the spectrum for the resulting normalised ice water
indicator of the liquid water content0x and lllingworth contentwas calculated. The spectra for individual clouds o
1997. For this reason, CloudSat estimates of ice watdre same size were then averaged together and multiplied
content are expected to be more accurate than thoséyfthe size of the cloud (i.e. the number of cells in the
liquid water content. Hence we focus on the FSD of icgoud). By Parseval's theorem, the integral of the resgltin
water content. It should be noted that this ice water conteméan spectrum for a given cloud size is equal to the mean
includes all frozen hydrometeors. Thus the results preserfractional variance (FVAR) for clouds of that size, where th
here are not necessarily applicable to ice particles that h&VAR of a cloud is defined as the square of the FSD of that
been split into multiple categories, such as “precipigitincloud. (Note however, that as the square is non-linear, the
and “suspended”. mean FVAR is not equal to the square of the mean FSD.)
This study uses data from two separate arbitrarifhese spectra are shown in Figdrbelow.
chosen periods. Initially we use data observed between
22nd December 2007 and 10th January 2008, a total of

9,752,539 CloudSat profiles, and over a billion values of '00-000¢ ' '
ice water content. As the satellite is polar orbiting, this ;
includes observations from all latitudes and longitudes an  10.000F E
should be representative of the whole CloudSat data set. ]
Nevertheless, to check that it is indeed representative, we I
test the parametrization on data observed between 15th Jyghe '090F 3
and 25th June 2006 (5,006,028 profiles and over 500 milliog '
water content observations). § 0.100F 3 E
3 cells 3
2]
3. Spectral Analysis [T Gecels
0.010F —— 128 cells i
A number of metrics have been used to study the Fo—— -5/3fit
statistical properties of clouds (e.larshaket al. 1997). 0.001[ . .
In this section we use one such technique, spectral 0.001 0.010 0.100 1.000
analysis, to study CloudSat ice water content. We chose Wavenumber (km™)

this metric as it is most widely used in the existing
gg&?stzzeafel%;aghigg ztif:]l?Sngslng\)lrS] tzat%\lllgr?ftlr% %ﬁgfthéigure 1. Mean spectra for clouds of fi_xed size, ranging_ from 8 to 128
A v > . loudSat cells (thin lines). For comparison, the thick kléne obeys a
spatial statistical properties of the CloudSat ice watep /3 power law.
content are consistent with other observation sources. Thi
spectral analysis complements the following section, Wwhic
considers how the FSD changes with horizontal domain Figure 1 shows several interesting features. The
size. spectrum for each cloud size appears to approximately obey
Many previous studies have observed that for scabkes-5/3 power law, as shown by the thick black line. This
between metres and tens of kilometres, the wavenumiseconsistent with the existing literature, as describettha@t
spectrum of cloud water content approximately follows lzeginning of this section. While the spectra obey&/3
—5/3 power law (e.gDaviset al. 1996 King et al. 1981). power law for all cloud sizes, the values of the spectra
However, this—5/3 power law is not observed universallydecrease for larger clouds. This implies that the FVAR per
For example, using ground-based radar observations afrét length of a small cloud is larger on average than that of
cirrus cloud,Hogan and Kew(2005 found that for scales a larger cloud. Despite this, the integral under the specttru
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increases for larger clouds, because we integrate over a 10 Gridbox Lengt?ogkm

larger horizontal scale. . . 1990
As the mean spectrunt; for a cloud of lengthz can —— ice water content
be approximated by a power law of the form g - ice water path =
5 1.0F - i
E = A(z)k 3, ® & )
bl
wherefk is the wavelength, the mean FVAR for a cloud of 3
lengthz can be calculated by integrating under the spectrung
as follows 3
L/ 2/3 <’§
FVAR — / E(R)dk = A@)(@*® —22%). () &
1/x
The_upper limit of the integra_ll/xl correspond:_s to the 0’11 1'0 160 1000
maximum wavenumber for which the spectrum is defined. Number CloudSat points per gridbox

This means that; is equal to the resolution of the data,

which in the case of the 2B-CWC-RVOD data used heﬁngure 2. Mean FSD of ice water content (solid line) and ice water path

equals 1.7 km. (dashed line) when data is divided into horizontal boxestaiomg the
Water content spectra have been observed to follgixen number of CloudSat profiles.

power laws down to scales as small as 3 King et al.

1981). This suggests that the spectra observed in Figure

can be extrapolated to smaller scales. In this case, the MEAN. <o as the aridbox size is increased. the aridbox ma
FVAR for a cloud of lengthe will simplify to 9 ’ 9 y

contain larger clouds, which have larger values of FSD. The
3) slope decreases with gridbox size because the rate at which
the FSD rises with cloud size decreases and larger clouds

Note however, that while this is a prediction of the actugFCUr |ess frequently.

FVAR, to ensure the best comparison to the CloudSat data_F'guré 3 again shows how the FSD of ice water
we must include the:, in order to exclude the variability CONtent increases with gridbox size (solid black line)s thi
that is unresolved in the data. time with vertical bars that show the standard deviation

In our spectral analysis, we have considered how gk the FSD for a selection of the gridbox sizes. The
water content variability changes with cloud size. Howgvéfashed line shows the case when we include only overcast
the sizes of individual clouds are not predicted in GCMErdPoxes, in which case the results are similar to those
which in general simply predict the cloud fraction withi Hogan and llingwort(2003, who also considered only
a gridbox. Consequently the observed relationship betwdygreast gridboxes. Note that the standard deviation of the

variability and cloud size cannot be used as a basis for EI%D IS muc_h ?ma'.'er when only overcast gridboxes are
parametrization. included. This implies that a considerable amount of the

variability of the FSD is due to the variability in cloud
fractions, which suggests there is a significant relatignsh
between FSD and cloud fraction, which is considered in
In this section we consider how the FSD of ice watépore detail in Sectiob. As the FSD for overcast gridboxes
content changes with the scale of the domain ovérless variable, we shall begin by parametrizing this and
which it is calculated. For ground-based cloud radften extend the parametrization to capture some of the extra
data,Hogan and lllingworti(2003 found that, for overcastvarlabnlty that is introduced when different cloud framiis
gridboxes, the FVAR of ice water content was proportion@f€ considered. _
to the size of the gridboxes to the power of 0.3 for scales up An overcast gridbox can only contain clouds that are
to 60 km, but that it grows no further for larger gridboxes larger than or equal to that gridbox in size. Thus the mean
To calculate the IWC FSD for a given domain siz&;SD for an overcast gridbox of sizecan be calculated by
each layer of the data is sub-divided horizontally inf@#mming the contributions to the FSD for each cloud size,
adjacent ‘gridboxes’ each containing the same numberagProximately equal to the square root of equafipand
CloudSat cells. For each gridbox that contains more th#gighting by the likelihood of sampling a cloud of that size,
one cloudy cell the FSD is calculated. Figitshows the

mean FSD of both ice water content and ice water path FSD = +/22/3 — xf/S Z VAW (2), 4)

FVAR = A(z)z?/3.

4. Horizontal scale

(calculated by summing the ice water content in a column),

calculated for gridboxes ranging from 4 to 500 profiles (6.8

to 850 km) in size. The FSD rises sharply with gridbox siagherelV (z) is the likelihood of an overcast gridbox of size
at smaller scales, then levels off at larger scales. Note théeing a sample from a cloud of sizeUsing a gradient-

the FSD for water path is larger than that for water conteskpansion algorithm to compute a non-linear least squares
This contradicts the suggestion Byionket al. (2010 that fit, we can approximate the sum by a combination of power
the FSD for water content was larger. This relationship lsws, resulting in the following parametrization for thelS
considered in more detail in secti@nwhere we consider of an overcast gridbox of sizekm,

the effect of the layer thickness on the inhomogeneity.

The trend of the FSD can be explained by the results OE YR 1.10 026
the spectral analysis. The FSD increases with gridbox siz SD=0.13v2?/3 — 1.41|(0.0162)" " + 1 . (5)

Copyright(© 2011 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-10(2011)
Prepared usingjjrms4.cls



Parametrizing inhomogeneity of ice water content 5

Gridbox Length (km
400 g60&) )

800 1000 1 .O i T T T T T T T T T T T T T T T T T T T ]
T T L

T T
all cloudy gridboxes
b ommmmmm overcast gridboxes only

C
.0
g o
>
I 1.0F i %
o o
g =
° I s "
§ | ! : P —— 200 profiles (340.0 km
& H ' S e 100 profiles (170.0 km
S - : N 0.2 ---- 50 profiles (85.0 km 7]
.5 : H L -= 25 profiles (42.5 km
§ * ; 0,0- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 9985999030935
OO =2=MNNUEUCD»DMIDUOUIIDNNO®®OOF
SLOUVOLLONOULOUNO MO NO OO O
0000000000000 0O0O0O00O0 =
L L O RNNUWRPO PO NNDDO OO
o] 100 200 300 400 500 600 L0000 00000 9000 N0 0o 0o
Number CloudSat points per gridbox Cloud Fraction

Figure 3. Mean FSD of ice water content as a function of gridbox siz€igure 4. Fractional standard deviation of ice water content (IWC F&®
for all data (solid line) and only those gridboxes that areroast (dashed a function of cloud fraction for gridboxes containing 2000150, and 25
line). The vertical bars show the standard deviation of BB For the given CloudSat cells (solid, dotted, dashed and dot-dashed i@sgectively).
gridbox size. The grey line shows the FSD given by equdiion

. . the cloud, and as a result have the effect of both increasing
_The FSD predicted by equatiéris shown by the grey he variability of water content in the cloud and decreasing
line in Figure3 and is an excellent fit to the mean observgfle mean water content of the cloud. Both of these lead to
FSD. Note that the-1.41 term corresponds to putting thelargervalues of ESD.
CloudSat resolution as the valueagfand is only necessary Alongside the FSD for all gridboxes, Figueshows

when comparing to the observed data, to account for ij@ Fsp for those gridboxes that contain exactly one cloud,
unresolved variability. but not necessarily the entire cloud (where a gridbox
contains one cloud if the cloudy cells are not separated by
5. Variability as a function of cloud fraction any clear cells). Also shown is the FSD for gridboxes that
i i ) contain exactly one cloud and both cloud edges (where the
According to Cahalan (1994, in the case of Califor- gqges are defined as the single cloudy cells at either end
nia marine stratocumulus, the liquid water content vag the cloud). Data for gridboxes containing 50 cells are
ance increases as the cloud fraction increases. This cQ{{g\yn. It is clear that the drop in FSD as cloud fraction
perhaps be explained by the horizontal scale depeRyrs one is due to the fact that overcast gridboxes tend not
dence discussed in the previous section. By contragtinciude cloud edges.
Oreopoulos and Cahalg2009 found no strong relation-
ship between cloud fraction and inhomogeneity, except
for cloud fractions greater than 0.9, when clouds become o8~~~ ~ T T T T
considerably more homogeneous. In this section, we inves- RN
tigate the relationship between FSD and cloud fraction and
attempt to explain these apparently contradictory results
Figure4 shows the mean FSD when gridboxes with a [
cloud fraction within a given range are binned together: o4l
Values for gridboxes containing 25, 50, 100 and 2002 ]

X . ref e one cloud only 1
CloudSat cells are shown. For all gridbox sizes, FSD ---- one cloud and both edges 1

initially increases with cloud fraction, then remains ffair 0.2 —— 50 profiles (80.0 km)
constant, before dropping off sharply if the gridbox is
overcast. As the gridbox size is increased, the cloud facti

c > ool o oy
at which the FSD no longer increases gets smaller. This S53533553585588385853538935%
suggests that the observed increase in FSD with cloud 85co38588858858383835383&88&°
fraction is related to cloud size rather than cloud fraction A M VRN O = =y vl v

SLQULNQUOUDNSUO N U0 RS

Assuming that the CloudSat resolution is sufficient to
resolve cloud edges, an overcast gridbox contains only a
single cloud and in almost all cases excludes the edges of
that cloud. In theory either or both of these could lead Ed'gure 5. Fractional standard deviation of ice water content (IWC FSD
h d - FSD that is ob d loud f as a function of cloud fraction for gridboxes containing i Solid
the steep decrease ”_1 that 'S_O. Serve - as cloud fractiBS snow the FSD for all gridboxes. Dotted lines show th® f@& those
approach one. A gridbox containing a single cloud maydboxes that contain one cloud only. Dashed lines show 8 for those
have a lower in-cloud FSD than one containing multiplgidboxes that contain only one cloud and contain all of ¢hisid.
clouds, which includes contributions from both internal
cloud variability and the variance in mean water content
between different clouds (cf. FiguB. Cloud edges often Equation5 gives the FSD only for a cloud fraction of
contain lower values of liquid water content than the rest ofie. In developing a parametrization applicable to smaller

Cloud Fraction
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6 P.G. Hill etal.

cloud fractions, we start by replacing the dependence on
gridbox size {) with a dependence on cloud extent) (i.e.

the gridbox size multiplied by the cloud fraction). However
the resulting FSD is an underestimate for cloud fractions
smaller than one. The four thin black lines in Figérghow

the ratio of the observed mean FSD to this predicted FS@
for the same 20 cloud fractions and four gridboxes sizes
in Figure4. Note that we do not include overcast scenes, 04/

1 O T T T T T T T T T T T T T T T T T T T

for which equatiorb is a good estimate. These ratios are T g:g;:::: E?‘;g-g mg
reasonably similar for all gridbox sizes, except for small 0.2 %~ —--- 50 profiles (85.0 km)

cloud fractions, where the FSD is already small, so a large - 25 profiles (42.5 km)

difference in ratio has less impact. Since the ratios are 0.0

oo‘o)—'—"‘rr »

similar, we average across the four gridbox sizes, as shown P I W R N A Ol St Gl Al Sl é
by the light grey line and then fit a linear function of cloud PR = A =g A S A G A <R A =g A S A < A =
fraction to this average, as shown by the thick dark greyline 23 a8 8953589333338 8483
T T T T T Cloud Fraction
2.6[ g Figure 7. Fractional standard deviation of ice water content (IWC F&D
Sal — 200 profiles (340.0 km) ] a function of cloud fraction. Black lines are as in Figdrérey lines show
A 100 profiles (170.0 km) 1 the FSD predicted by equatidn
22 -_".‘ ---- 50 profiles (85.0 km) _
o === 25 profiles (42.5 km) 1
o Lo 4
; 2-0:‘ ' — lineor fit to overage ] 6. Vertical layer thickness
[

Figure 2 shows that the FSD of ice water path is larger
than that of ice water content, which suggests that the
FSD increases as vertical resolution decreases. Thi®secti
considers the relationship between FSD and vertical layer

00°0) [T
50°0)
ool

=
©
o

000000000000 oc0o0oococo thickness in more detail.

- O o . g e .
SGouSRSG55533F53SFSH To determine the sensitivity of FSD to vertical scales,
OCO0OO0O0D000O00D0DO0OO00O0OO00O0O0O0O0 —~ . . .
O RNNUWERTO DD N®RDO© D IWC values are averaged in the vertical to create thicker
el NeoNt NoNi NoN NN NoN NoNt No NI NeoNd Ne) ..

T T Rt T T T T layers. For example, after the original data, the next

highest resolution data was calculated by summing the
Figure 6. Ratio of observed ice water content fractional standardatien IWC in a_dlacent_ layers to create a pro_flle _contalnlng 1_-24
(FSD) and the FSD predicted by equatas a function of cloud fraction. Overlapping vertical layers each of which is 480 m thick

Note that we use the cloud extent instead of the gridbox sizgjuation (recall the original data has 125 layers, each of which is 240
5. The thin black lines correspond to the observed relatipn&br the m thick).

different gridbox sizes. The light grey line shows the agereelationship .
for these gridbox sizes and the dark grey line shows a linéao fihis Figure 8 shows the mean FSD calculated for Iayers

average relationship. of the given thickness, for two different horizontal gricko
sizes, containing 200 and 25 CloudSat cells. The solid
lines include all data and show that the FSD increases as

Combining the average ratio estimated from Figu@yer thickness increases. The increase is most rapidéor th
t

6 and the FSD based on cloud extent gives the followi
equation for the FSD for a partially cloudy gridbox.

innest layers, which correspond to the vertical resohsti
at are likely to be used in GCMs.

The increase in FSD as the layer thickness increases
o0 CAN _be explained as follows. _Consider a gridbox containing
FSD= (0.25 — 0.04¢)\/(2c)2/3 — L4 | (0.016z¢)"* + 1} mult|p_le Iayers,. each of Whlch contains cloudy cells,

covering a fraction of the gridbox. Assume that the clouds

are horizontally homogeneous and the water content in each
wherec is the cloud fraction. The FSD predicted by thigloudy cell equalsz. Thus the FSD in any layer equals
equation is shown in Figur€. The equation captureszero. Now sum the water contents in the vertical. If the
the FSD pattern well, though the slight decrease in FSRmen cells are cloudy in each layer (i.e. the clouds are
as cloud fractions approach one, which is particularékactly overlapped), then the integrated water content in
evident for the large gridboxes, is not captured by tlk&ch column will be the same and the FSD will be zero.
parametrization. As a result the FSD for cloud fractiongowever if not, then the columns would contain different
around 0.9 is overestimated. For the smallest gridboxgsegrated water content and FSD will be non-zero. That is,
the FSD for very small cloud fractions is overestimatethe integrated FSD would be larger than that in any layer
However, for other gridbox sizes the initial increase ibecause the integrated FSD is accounting for apparent in-
FSD with cloud fraction is very well predicted and fotloud inhomogeneity that is in fact simply due to the veltica
intermediate cloud fractions the parametrization erroes aesolution being insufficient to resolve cloud boundaries.
small. Despite being relatively simple, the parametrazati The dashed lines in Figur8 show how the FSD
provides a very good estimate of the complex relationsldpanges with layer thickness for gridboxes that contain
between IWC variability and cloud fraction at all gridboxne cloud whose layers are exactly overlapped (i.e. the
sizes. vertically integrated cloud fraction is identical to th@atl
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Parametrizing inhomogeneity of ice water content 7

which appears to be best described by a power law. The
 Thickness of layer (km) dark grey lines show the mean FSD given by equation
1.0[ - ' ] 6. Neither of the dark grey lines show any significant
///_—_/ 1 change with increasing thickness, which implies that the

[ ] thickness dependence is independent of this equation. Thus

: we assume that we can predict the FSD for a single layer
exactly and simply consider how the relationship between
this FSD and the multi-layer FSD changes with increasing

layer thickness. Letting\z denote the layer thickness (in

km) andA denote the FSD for a single layer, a least square
— 200 profiles (340.0 km) el R 1 error fit gives

IWC FSD

------ one cloud only

loud with t [ ) Az o
o1 --- one cloud wi elxoc overlap . FSD= A <—> . (7)
1 - - 0.24

Number of CloudSat levels per layer

Figure 8. Mean fractional standard deviation of ice water content@W Thickness of layer (km)
FSD) for given vertical resolution. The solid lines show thean FSD 0.5 1.0 1.5
when no restrictions are applied to the data, the dotted Istew the 1.0[
mean FSD for those gridboxes that contain only one cloudrioéoreaks r
between cloudy cells) and the dashed lines show the FSD figeth 0.8
gridboxes that contain only one cloud where exactly the sagtie contain
cloud in each layer of the original data. The black lines espond to
gridboxes containing 200 cells and the grey lines to grigsccontaining
25 cells.

0.6 B

0.4 =

IWC FSD

[ 200 profiles (340.0 km) 1
fraction in each layer). For these gridboxes, the FSD does o2{ -~ 25 profiles (42.5 km) -
not need to account for any unresolved cloud structure. L vioue version of coremetrisation ]
Hence the FSD decreases as layer thickness increases. ool . . i s ’ .

This is the behaviour predicted b$honket al. (2010, 2 4 6 8 10

who suggested that this is because in-cloud water content Number of CloudSat levels per loyer

decorrelates as the distance between layers increases (e.g

Barker and Raisanen 20,05109_an and IIIm_gworth 2003 Figure 9. Mean fractional standard deviation of ice water content@W
which has the effect of smoothing the vertical average. Fsp) for vertical resolution between 240 m and 2.4 km. Fadlgkes of

The FSD for those gridboxes that contain exactly oteagth 340 km (dotted line) and 42.5 km (dashed line). Thi degy lines
cloud, with 1o restricion on overlap between cloud oy e e D it o smionten Soo Sl
different layers, is shown by the dotted lines in Figére eqﬁati0n7, where ¥he value of A is chgseg sg that the equati%n giveys the
Now the FSD has to account for some unresolved clobikerved value of FSD for individual CloudSat layers.
structure. As the layer thickness increases, the amount of
unresolved structure increases. The competing effects of
the unresolved cloud structure and the smoothing effect of
decorrelating water content lead to a FSD that generafly Parametrization
increases slightly with layer thickness.

If no restrictions are placed on the gridboxes (oth&éve have seen that the mean in-cloud FSD depends on the
than that they contain some cloud), then there may $eale over which it is calculated (both horizontally and
multiple clouds in the gridbox and as the layer thicknesertically) and cloud fraction. The remainder of this dgic
increases, there may be a great deal of unresolved cldlus$trates how these relationships can be combined into a
structure. This means that the FSD increases significardiilygle parametrization and describes the results of gestin
as layer thickness increases, as shown by the solid lineshiis parametrization.

Figure8. The mean FSD for a gridbox of horizontal lengthkm

Figure 8 suggests that FSD of ice water conterind thickness\z km is obtained by combining equations
is quite sensitive to vertical resolution and that it i§ and7 to get equatior8, wherec is the cloud fraction.
worthwhile including a vertical resolution dependence iNote thatr; is again equal to the minimum resolved scale,
any parametrization. For simplicity, the parametrizatiaand for the purpose of comparing this parametrization to
is restricted to layers that are thinner than 2.4 km (i.€loudSat observations is set to 1.7 km. However when this
contain less than 10 CloudSat layers). Beyond this scglarametrization is implemented in a GCM, should be set
the relationship between FSD and layer thickness cannotbeero.
accurately described with a simple equation. Moreover, the
relevant layers in current GCMs (i.e. the layers that contai.1. Comparing observed FSD to modelled FSD
clouds) are generally thinner than 2.4 km.

The relevant part of Figurgis shown againin Figur@ The parametrization defined by equatiBnis tested on
(note that it is no longer in log-log space). The broken linegveral days of CloudSat data from Summer 2006. These
show the relationship between FSD and layer thicknedsta are independent of the CloudSat data that were used
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—0.26
(0.29 — 0.05¢)+/(xc)2/3 — 1.41 {(0.0163:(:)1'10 + 1] (A ife<1;

FSD= (8)
—0.26
0.15vx2/3 —1.41 [(0.0161’)1'10 + 1] (A0 if c=1.
to develop the parametrization. The data were divided
into gridboxes of size 200, 100, 50 and 25 km (which 243 —porometrisation  — 200 km ]
corresponds to gridboxes containing 117, 59, 29 and 15 i o égok:qm:
CloudSat profiles respectively) and thickness from 240 m _ %40 cee 25 km ]

to 2.4 km in 240 m increments (which corresponds to

vertically averaging between 1 and 10 CloudSat layers). For
each cloudy gridbox, the observed FSD and parametrized
FSD were calculated. These were then used to calculate
the parametrization bias (i.e. the mean difference between
the FSD predicted by the parametrization and the observed
FSD), shown in FigurelO and the mean absolute error I
(the mean of the absolute value of the difference between ¢ ,0[
the FSD predicted by the parametrization and the observed 3

Mean Absolute FSD Error
o
1
S
T
1

FSD) of the parametrization, shown in Figuté To put 015t . . . .
these values into context, the bias and mean absolute error 0.0 05 1.0 1.5 2.0 2.5
for a constant FSD equal to 0.75 are also shown. This Layer thickness (km)

is the global mean FSD for all cloud types estimated

by Shonket al. (2010 based on a review of the existingigure 11. Mean absolute difference between the fractional standard
literature. deviation (FSD) of ice water content given by equatioand the observed
FSD, expressed as a percentage of the mean observed FSEs tayge
from 240 m to 2.4 km in thickness and gridbox sizes are 200d)sdl00
(dotted), 50 (dashed) and 25 (dot-dashed) km.

0'4§ — porc:rlnetrisotionI —"200 km 3

: ] The mean absolute errors of the FSD predicted by
0.2F 3 the parametrization are shown in Figuté These errors

: ] increase with gridbox thickness and length. The largesterr

; ] is approximately 0.29 and corresponds to gridboxes that are
o1 E 2.4 km thick and 200 km long. The mean absolute errors
: ] for the parametrization are smaller than those obtained
from the single FSD value for all gridbox sizes and

FSD bias (parametrised minus observed)

0of
: thicknesses. Of particular note is the improvement for
: ] the gridboxes that are 200 km long and 1.0 km thick.
'0’10.0 0'5 1fo 1'5 2'0 o5 Here the biases for both the parametrization and 0.75 are

Layer thickness (km) approximatel_y Zero. Howevgar, QUe to the cloud fraction
dependence in the parametrization, the mean absolute error

for the parametrization is significantly smaller than ttaat f
Figure 10. Mean difference between the fractional standard deviatignigp=0 75.

(FSD) of ice water content given by equati@nand the observed FSD, . . . . . .
for layers between 240 m and 2.4 km in thickness and gridbmessif 200 The information shown in these Figures is summarised

(solid), 100 (dotted), 50 (dashed) and 25 (dot-dashed) km. in Table I, which shows mean values across all the
horizontal and vertical scales included in Figudésand
11 To add further context we also include the statistics for
The bias of the FSD predicted by the parametrizatiéfie mean FSD, calculated by averaging the mean FSD for
is small for all gridbox sizes and layer thicknesses. Tig@ch of the resolutions shown in Figuesand11. This is
behaviour of this bias can be understood by consideringbiased when all the data is combined, but biased for any
the individual components of the parametrization. Thedividual resolution. The bias row shows the mean error of
relationship between FSD bias and layer thickness al biases shown in Figur&0, which is zero by definition
similar for all four gridbox sizes and is the same deor the mean. The mean absolute bias row shows the mean
that for the thickness parametrization shown in Figugd the absolute value of the the biases shown in Figire
9. The relationship between FSD bias and gridbox si2ad the mean absolute error shows the mean of the absolute
is consistent with that shown in Figug The constant errors shown in Figurd1l The parametrization performs
FSD is a good estimate of the mean FSD for gridboxestter than both the unbiased FSD value and the control
that are 200 km in length, but overestimates the obsenfesD.
FSD for smaller gridboxes and has larger biases than the The mean absolute FSD error can be split into four
parametrization for all gridbox sizes. components. Some of the error is due to the relationships
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Parametrizing inhomogeneity of ice water content 9

Control (0.75) Mean (0.60) Param

Bias 0.15 0.00 -0.02
Mean absolute bias 0.16 0.11 0.03
Mean absolute error 0.33 0.28 0.24

Table |. Mean statistics for all the data shown in Figutésnd11.

that are included in the parametrization being in errorsTiparametrization is included in other GCMs, care should be
corresponds to the errors that arose when fitting equatitaisen to ensure that it is applied to theal ice content.

to the observed trends. There is also a component dues may be more challenging for those GCMs which have
to a FSD dependence on variables that are not inclugediagnostic ice category.

in the parametrization. For examptegan and Illingworth The existing parametrization is for ice water content
(2003 found a dependence on wind shear, which is nonly. Liquid water content variability is equally importan
included in this parametrization, due to a lack of reliabknd it is not clear whether it is significantly different. bgi
global wind speed data to compare to the ice water contM®DIS dataOreopoulos and Cahal§20035 found similar
observations. The third component of the mean absolugiability in ice and liquid clouds. On the other hand,
error is the sampling error introduced when the observBtonk and Hoga(2008§ found that ice clouds exhibit more
FSD is calculated. This decreases as the gridbox sivater content variability than liquid clouds. It would be
increases. This could be reduced by using higher resolutioformative to compare this parametrization to observetio
observations. The final component of the error is due @bliquid water content variability.

unpredictable variability of FSDHogan and Illingworth

(2003 observed that even within a single cloud, th@cknowledgements

horizontal inhomogenesity varies significantly. CloudSat data were obtained from the CloudSat Data
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like to thank two anonymous reviewers for their construc-
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8. Summary

This article describes a study of ice water content vaiitgbil
using combined CloudSat and MODIS observations. Ig&ferences
water content variability is considered in terms of the
fractional standard deviation (FSD); the standard demiatiAustin RT, Heymsfield AJ, Stephens GL. 2009. Retrieval ofdkmid
divided by the mean. Results show that FSD increases a%"gmphys'ca' pgrzmetegs Uz”%ihe[)g'gxgssat millimetavewradar
the horizontal scale over which it is calculated increasgsan temperaturdl. Geophys. Red1{ 3).
and when water content is averaged over larger verticg ker HW, Raisanen P. 2005. Radiative sensitivitiesfoud structural

. 9 _g roperties that are unresolved by conventional GCsJ. Roy.
scales. A nonlinear dependence on cloud fraction was alseteorol. Soc131: 3103-3122.
identified; FSD was seen to increase with cloud fracti@arker Hw, Wielicki BA, Parker L. 1996. A parameterizatioor f
for small cloud fractions, while the mean FSD for overcast computing grid-averaged solar fluxes for inhomogeneousinaar
gridboxes was found to be significantly smaller than that forboundary layer clouds. Part Il: Validation using sateltis#a.J. Atm.
gridboxes with large cloud fractions. This decline in FSD Sci-53(16): 2304-2316. _ _
was shown to be a result of overcast gridboxes excludiﬁa‘a'a” RF. 1994. Bounded cascade clouds: albedo andhaffect
cloud edges. These relationships have been included.j hicknessNonlinear Processes in Geophysig/3): 156-167.

. . St . alan RF, Joseph JH. 1989. Fractal statistics of cloudkfiglonthly
a relatively simple parametrization of ice water content, weather Review172): 261-272.

suitable for use in a GCM. o Cahalan RF, Ridgway W, Wiscombe WJ, Bell TL, Snider JB. 19%%
The performance of the new parametrization wasalbedo of fractal stratocumulus clouds. Atm. Sci51(16): 2,434—
tested using data taken from a different period in time.2,455.
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the effect of other variables (e.g. wind shear) on the FsSDFox NI, lllingworth AJ. 1997. The potential of a spaceborreud

In future work, this parametrization will be imple- ,r\?ggo];%rl;g;g(%t)e:(g;)en_g;?s.tratocumUIUS cloudisurnal of Applied
mented in the UK Met Office Unified Model (MetUM) andGu Y, Liou KN. 2006. Cirrus cloud horizontal and vertical
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